Geodesic nets on non-compact Riemannian manifolds
Autor: | Chambers, Gregory R., Liokumovich, Yevgeny, Nabutovsky, Alexander, Rotman, Regina |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A geodesic flower is a finite collection of geodesic loops based at the same point $p$ that satisfy the following balancing condition: The sum of all unit tangent vectors to all geodesic arcs meeting at $p$ is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that in every complete non-compact manifold with locally convex ends there exists a non-trivial geodesic flower. |
Databáze: | arXiv |
Externí odkaz: |