On endomorphism algebras of Gelfand-Graev representations II
Autor: | Li, Tzu-Jan, Shotton, Jack |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Bull. London Math. Soc. (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/blms.12899 |
Popis: | Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic $p$, with Deligne--Lusztig dual $G^\ast$. We show that, over $\overline{\mathbb{Z}}[1/pM]$ where $M$ is the product of all bad primes for $G$, the endomorphism ring of a Gelfand--Graev representation of $G(\mathbb{F}_q)$ is isomorphic to the Grothendieck ring of the category of finite-dimensional $\overline{\mathbb{F}}_q$-representations of $G^\ast(\mathbb{F}_q)$. Comment: 15 pages. The section numbering has been changed |
Databáze: | arXiv |
Externí odkaz: |