Unicity of types and local Jacquet--Langlands correspondence
Autor: | Yamamoto, Yuki |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $F$ be a non-archimedean local field. For any irreducible representation $\pi$ of an inner form $G'=\mathrm{GL}_{m}(D)$ of $G=\mathrm{GL}_{N}(F)$, there exists an irredubile representation of a maximal compact open subgroup in $G'$ which is also a type for $\pi$. Then we can consider the problem whether these types are unique or not in some sense. If such types for $\pi$ are unique, we say $\pi$ has the strong unicity property of types. On the other hand, there exists a correspondence connecting irreducible representations of $G'$ and $G$, called the Jacquet--Langland correspondence. In this paper, we study the ralation between the strong unicity of types and the Jacquet--Langlands correspondence. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |