On a wider class of prior distributions for graphical models
Autor: | Natarajan, Abhinav, Boom, Willem van den, Odang, Kristoforus Bryant, De Iorio, Maria |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Applied Probability 61 (2024) 230-243 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/jpr.2023.33 |
Popis: | Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of $\mathcal{G}_n$, the set of all graphs in $n$ vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of $\mathcal{G}_n$. In this paper, we study subsets that are vector subspaces with the cycle space $\mathcal{C}_n$ as main example. We propose a novel prior on $\mathcal{C}_n$ based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms. Comment: 37 pages, 8 figures |
Databáze: | arXiv |
Externí odkaz: |