Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $[0,1]$

Autor: Astashkin, Sergey V., Curbera, Guillermo P.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $(0,\infty)$.
Comment: 17 pages. arXiv admin note: text overlap with arXiv:2104.13077
Databáze: arXiv