Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $[0,1]$
Autor: | Astashkin, Sergey V., Curbera, Guillermo P. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $(0,\infty)$. Comment: 17 pages. arXiv admin note: text overlap with arXiv:2104.13077 |
Databáze: | arXiv |
Externí odkaz: |