Categorifications of Non-Integer Quivers: Types $H_4$, $H_3$ and $I_2(2n+1)$
Autor: | Duffield, Drew Damien, Tumarkin, Pavel |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define the notion of a weighted unfolding of quivers with real weights, and use this to provide a categorification of mutations of quivers of finite types $H_4$, $H_3$ and $I_2(2n+1)$. In particular, the (un)folding induces a semiring action on the categories associated to the unfolded quivers of types $E_8$, $D_6$ and $A_{2n}$ respectively. We then define the tropical seed pattern on the folded quivers, which includes $c$- and $g$-vectors, and show its compatibility with the unfolding. Comment: 48 pages |
Databáze: | arXiv |
Externí odkaz: |