On a class of interpolation inequalities on the 2D sphere
Autor: | Ilyin, Alexei, Zelik, Sergey |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove estimates for the $L^p$-norms of systems of functions and divergence free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants in the embedding $H^1\hookrightarrow L^q$, $q<\infty$, are obtained in the Gagliardo--Nirenberg interpolation inequalities. |
Databáze: | arXiv |
Externí odkaz: |