On a class of interpolation inequalities on the 2D sphere

Autor: Ilyin, Alexei, Zelik, Sergey
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We prove estimates for the $L^p$-norms of systems of functions and divergence free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants in the embedding $H^1\hookrightarrow L^q$, $q<\infty$, are obtained in the Gagliardo--Nirenberg interpolation inequalities.
Databáze: arXiv