Isoperimetric lower bounds for critical exponents for long-range percolation

Autor: Bäumler, Johannes, Berger, Noam
Rok vydání: 2022
Předmět:
Zdroj: Ann. Inst. H. Poincar\'e Probab. Statist. 60(1): 721-730 (February 2024)
Druh dokumentu: Working Paper
DOI: 10.1214/22-AIHP1342
Popis: We study independent long-range percolation on $\mathbb{Z}^d$ where the vertices $x$ and $y$ are connected with probability $1-e^{-\beta\|x-y\|^{-d-\alpha}}$ for $\alpha > 0$. Provided the critical exponents $\delta$ and $2-\eta$ defined by $\delta = \lim_{n\to \infty} \frac{-\log(n)}{\log\left(\mathbb{P}_{\beta_c}\left(|K_0|\geq n\right)\right)}$ and $2-\eta = \lim_{x \to \infty} \frac{\log\left(\mathbb{P}_{\beta_c}\left(0\leftrightarrow x\right)\right)}{\log(\|x\|)} + d$ exist, where $K_0$ is the cluster containing the origin, we show that \begin{equation*} \delta \geq \frac{d+(\alpha\wedge 1)}{d-(\alpha\wedge 1)} \ \text{ and } \ 2-\eta \geq \alpha \wedge 1 \text. \end{equation*} The lower bound on $\delta$ is believed to be sharp for $d = 1, \alpha \in \left[\frac{1}{3},1\right)$ and for $d = 2, \alpha \in \left[\frac{2}{3},1\right]$, whereas the lower bound on $2-\eta$ is sharp for $d=1, \alpha \in (0,1)$, and for $\alpha \in \left(0,1\right]$ for $d>1$, and is not believed to be sharp otherwise. Our main tool is a connection between the critical exponents and the isoperimetry of cubes inside $\mathbb{Z}^d$.
Comment: 13 pages, 2 figures
Databáze: arXiv