Linear and nonlinear analysis of the viscous Rayleigh-Taylor system with Navier-slip boundary conditions

Autor: Nguyen, Tien-Tai
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we are interested in the nonlinear Rayleigh-Taylor instability for the gravity-driven incompressible Navier-Stokes equations with Navier-slip boundary conditions around a smooth increasing density profile $\rho_0(x_2)$ in a slab domain $2\pi L\mathbb{T} \times (-1,1)$ ($L>0$, $\mathbb{T}$ is the usual 1D torus). The linear instability study of the viscous Rayleigh-Taylor model amounts to the study of the following ODE on the finite interval $(-1,1)$, \begin{equation}\label{EqMain} \lambda^2 ( \rho_0 k^2 \phi - (\rho_0 \phi')')+ \lambda \mu (\phi^{(4)} - 2k^2 \phi'' + k^4 \phi) = gk^2 \rho_0'\phi, \end{equation} with the boundary conditions \begin{equation}\label{4thBound} \begin{cases} \phi(-1)=\phi(1)=0,\\ \mu \phi''(1) = \xi_+ \phi'(1), \\ \mu \phi''(-1) =- \xi_- \phi'(-1), \end{cases} \end{equation} where $\lambda>0$ is the growth rate in time, $g>0$ is the gravity constant, $k$ is the wave number and two Navier-slip coefficients $\xi_{\pm}$ are nonnegative constants. For each $k\in L^{-1}\mathbb{Z}$, we define a threshold of viscosity coefficient $\mu_c(k,\Xi)$ for the linear instability. So that, in the $k$-supercritical regime, i.e. $\mu>\mu_c(k,\Xi)$, we describe a spectral analysis adapting the operator method initiated by Lafitte-Nguyen \cite{LN20} and prove that there are infinite nontrivial solutions $(\lambda_n, \phi_n)_{n\geqslant 1} $ of \eqref{EqMain}-\eqref{4thBound} with $\lambda_n \to 0$ as $n\to \infty$ and $\phi_n\in H^4((-1,1))$. Based on the existence of infinitely many normal modes of the linearized problem, we construct a wide class of initial data to the nonlinear equations, extending the previous framework of Guo-Strauss \cite{GS95} and of Grenier \cite{Gre00}, to prove the nonlinear Rayleigh-Taylor instability in a high regime of viscosity coefficient, namely $\mu >3\sup_{k\in L^{-1}\mathbb{Z}\setminus\{0\}}\mu_c(k,\Xi)$.
Databáze: arXiv