Stability threshold of the Couette flow for Navier-Stokes Boussinesq system with large Richardson number $\gamma^2>\frac{1}{4}$
Autor: | Zhai, Cuili, Zhao, Weiren |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we study the nonlinear asymptotic stability of the Couette flow in the stably stratified regime, namely the Richardson number $\gamma^2>\frac{1}{4}$. Precisely, we prove that if the initial perturbation $(u_{in},\vartheta_{in})$ of the Couette flow $v_s=(y,0)$ and the linear temperature $\rho_s=-\gamma^2y+1$ satisfies $\|u_{in}\|_{H^{s+1}}+\|\vartheta_{in}\|_{H^{s+2}}\leq \epsilon_0\nu^{\frac{1}{2}}$, then the asymptotic stability holds. |
Databáze: | arXiv |
Externí odkaz: |