The characterizing properties of (signless) Laplacian permanental polynomials of bicyclic graphs
Autor: | Wu, Tingzeng, Zhou, Tian |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $G$ be a graph with $n$ vertices, and let $L(G)$ and $Q(G)$ be the Laplacian matrix and signless Laplacian matrix of $G$, respectively. The polynomial $\pi(L(G);x)={\rm per}(xI-L(G))$ (resp. $\pi(Q(G);x)={\rm per}(xI-Q(G))$) is called {\em Laplacian permanental polynomial} (resp. {\em signless Laplacian permanental polynomial}) of $G$. In this paper, we show that two classes of bicyclic graphs are determined by their (signless) Laplacian permanental polynomials. |
Databáze: | arXiv |
Externí odkaz: |