$\mathsf{SOCA}$ and $\mathsf{OGA}$ for $\mathsf{HL}$ spaces with strong properties
Autor: | Corona-García, José Antonio, Ongay-Valverde, Iván, Ramos-García, Ulises Ariet |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study open colorings in certain classes of hereditary Lindel\"{o}f ($\mathsf{HL}$) spaces and submetrizable spaces. In particular, we show that the definible version for the Open Graph Axiom ($\mathsf{OGA}$) holds for the class of $\mathsf{HL}$ strong Choquet submetrizable spaces extending a well-known result of Feng. Furthermore, we show the consistency of the Open Graph Axiom for regular spaces that have countable spread and it's square also has it, reaching closer to a well known conjecture of Todor\v{c}evi\'{c}: "It is consistent that all regular spaces with countable spread satisfy $\mathsf{OGA}$". Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |