Interior H\'older regularity for stable solutions to semilinear elliptic equations up to dimension 5
Autor: | Peng, Fa, Zhang, Yi Ru-Ya, Zhou, Yuan |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $2\le n\le 5$. We establish an apriori interior H\"older regularity of $C^2$-stable solutions to the semilinear equation $-\Delta u=f(u)$ in any domain of $R^n$ for any nonlinearity $f\in C^{0,1}(R) $.If $f $ is nondecreasing and convex in addition,we obtain an interior H\"older regularity, and hence the local boundedness, of $W^{1,2}(\Omega)$-stable solutions by locally approximating them via $C^2(\Omega)$-stable solutions. In particular, we do not require any lower bound on $f$. |
Databáze: | arXiv |
Externí odkaz: |