Edge observables of the Maxwell-Chern-Simons theory
Autor: | G., J. Fernando Barbero, Díaz, Bogar, Margalef-Bentabol, Juan, Villaseñor, Eduardo J. S. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Physical Review D, 106 (2022) 025011 |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevD.106.025011 |
Popis: | We analyze the Lagrangian and Hamiltonian formulations of the Maxwell-Chern-Simons theory defined on a manifold with boundary for two different sets of boundary equations derived from a variational principle. We pay special attention to the identification of the infinite chains of boundary constraints and their resolution. We identify edge observables and their algebra [which corresponds to the well-known $U(1)$ Kac-Moody algebra]. Without performing any gauge fixing, and using the Hodge-Morrey theorem, we solve the Hamilton equations whenever possible. In order to give explicit solutions, we consider the particular case in which the fields are defined on a $2$-disk. Finally, we study the Fock quantization of the system and discuss the quantum edge observables and states. Comment: 23 pages |
Databáze: | arXiv |
Externí odkaz: |