Huisken-Yau-type uniqueness for area-constrained Willmore spheres

Autor: Eichmair, Michael, Koerber, Thomas, Metzger, Jan, Schulze, Felix
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $\Sigma \subset M$ with non-negative Hawking mass and inner radius $\rho$ dominated by the area radius $\lambda$. If the scalar curvature of $(M,g)$ is non-negative, we show that no such surfaces with $\log \lambda \ll \rho$ exist. This answers a question of G. Huisken.
Comment: Final version to appear in Duke Math. J. $ $
Databáze: arXiv