Huisken-Yau-type uniqueness for area-constrained Willmore spheres
Autor: | Eichmair, Michael, Koerber, Thomas, Metzger, Jan, Schulze, Felix |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $\Sigma \subset M$ with non-negative Hawking mass and inner radius $\rho$ dominated by the area radius $\lambda$. If the scalar curvature of $(M,g)$ is non-negative, we show that no such surfaces with $\log \lambda \ll \rho$ exist. This answers a question of G. Huisken. Comment: Final version to appear in Duke Math. J. $ $ |
Databáze: | arXiv |
Externí odkaz: |