On Dunkl Schr\'odinger semigroups with Green bounded potentials
Autor: | Dziubański, Jacek, Hejna, Agnieszka |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | On $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|^{k(\alpha)}\, d\mathbf x, $$ we consider a Dunkl Schr\"odinger operator $L=-\Delta_k+V$, where $\Delta_k$ is the Dunkl Laplace operator and $V\in L^1_{\rm loc} (dw)$ is a non-negative potential. Let $h_t(\mathbf x,\mathbf y)$ and $k^{\{V\}}_t(\mathbf x,\mathbf y)$ denote the Dunkl heat kernel and the integral kernel of the semigroup generated by $-L$ respectively. We prove that $k^{\{V\}}_t(\mathbf x,\mathbf y)$ satisfies the following heat kernel lower bounds: there are constants $C, c>0$ such that $$ h_{ct}(\mathbf x,\mathbf y)\leq C k^{\{V\}}_t(\mathbf x,\mathbf y)$$ if and only if $$ \sup_{\mathbf x\in\mathbb R^N} \int_0^\infty \int_{\mathbb R^N} V(\mathbf y)w(B(\mathbf x,\sqrt{t}))^{-1}e^{-\|\mathbf x-\mathbf y\|^2/t}\, dw(\mathbf y)\, dt<\infty, $$ where $B(\mathbf x,\sqrt{t})$ stands for the Euclidean ball centered at $\mathbf x \in \mathbb{R}^N$ and radius $\sqrt{t}$. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |