High-resolution Compton spectroscopy using X-ray microcalorimeters

Autor: Patel, U., Guruswamy, T., Krzysko, A. J., Charalambous, H., Gades, L., Wiaderek, K., Quaranta, O., Ren, Y., Yakovenko, A., Miceli, A.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/5.0092693
Popis: X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic X-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy X-ray light source facility using an X-ray microcalorimeter detector. Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles shows high-sensitivity to the low-Z elements and oxidation states. The lineshape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is limited by the resolution of the energy-resolving semiconductor detector. We have characterized an X-ray transition-edge sensor microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source (APS) with a double crystal monochromator providing monochromatic photon energies near 27.5 keV. The momentum resolution below 0.16 atomic units was measured yielding an improvement of more than a factor of 7 over a state-of-the-art silicon drift detector for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an X-ray microcalorimeter detector compared to smeared and broadened lineshapes observed when using a silicon drift detector. High-resolution Compton scattering using the energy-resolving detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.
Comment: The following article has been submitted to Applied Physics Letters
Databáze: arXiv