Generation and Simulation of Synthetic Datasets with Copulas

Autor: Houssou, Regis, Augustin, Mihai-Cezar, Rappos, Efstratios, Bonvin, Vivien, Robert-Nicoud, Stephan
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: This paper proposes a new method to generate synthetic data sets based on copula models. Our goal is to produce surrogate data resembling real data in terms of marginal and joint distributions. We present a complete and reliable algorithm for generating a synthetic data set comprising numeric or categorical variables. Applying our methodology to two datasets shows better performance compared to other methods such as SMOTE and autoencoders.
Databáze: arXiv