Autor: |
Houssou, Regis, Augustin, Mihai-Cezar, Rappos, Efstratios, Bonvin, Vivien, Robert-Nicoud, Stephan |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
This paper proposes a new method to generate synthetic data sets based on copula models. Our goal is to produce surrogate data resembling real data in terms of marginal and joint distributions. We present a complete and reliable algorithm for generating a synthetic data set comprising numeric or categorical variables. Applying our methodology to two datasets shows better performance compared to other methods such as SMOTE and autoencoders. |
Databáze: |
arXiv |
Externí odkaz: |
|