Disjoint hypercyclicity, Sidon sets and weakly mixing operators

Autor: Cardeccia, Rodrigo
Rok vydání: 2022
Předmět:
Zdroj: Ergod. Th. Dynam. Sys. 44 (2024) 1315-1329
Druh dokumentu: Working Paper
DOI: 10.1017/etds.2023.54
Popis: We prove that a finite set of natural numbers $J$ satisfies that $J\cup\{0\}$ is not Sidon if and only if for any operator $T$, the disjoint hypercyclicity of $\{T^j:j\in J\}$ implies that $T$ is weakly mixing. As an application we show the existence of a non weakly mixing operator $T$ such that $T\oplus T^2\ldots \oplus T^n$ is hypercyclic for every $n$.
Databáze: arXiv