Upper bounds for the critical values of homology classes of loops

Autor: Rademacher, Hans-Bert
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: In this short note we discuss upper bounds for the critical values of homology classes in the based and free loop space of manifolds carrying a Riemannian or Finsler metric of positive Ricci curvature. In particular it follows that a shortest closed geodesic on a simply-connected $n$-dimensional manifold of positive Ricci curvature $\textrm{Ric} \ge n-1$ has length $\le n \pi.$
Comment: 6 pages, comments are welcome
Databáze: arXiv