The Spectrum of an Almost Maximally Open Quantized Cat Map
Autor: | Borns-Weil, Yonah |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider eigenvalues of a quantized cat map (i.e. hyperbolic symplectic integer matrix), cut off in phase space to include a fixed point as its only periodic orbit on the torus. We prove a simple formula for the eigenvalues on both the quantized real line and the quantized torus in the semiclassical limit as $h\to0$. We then consider the case with no fixed points, and prove a superpolynomial decay bound on the eigenvalues. The results are illustrated with numerical calculations. Comment: 35 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |