Liars are more influential: Effect of Deception in Influence Maximization on Social Networks

Autor: Aktas, Mehmet Emin, Akbas, Esra, Hahn, Ashley
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Detecting influential users, called the influence maximization problem on social networks, is an important graph mining problem with many diverse applications such as information propagation, market advertising, and rumor controlling. There are many studies in the literature for influential users detection problem in social networks. Although the current methods are successfully used in many different applications, they assume that users are honest with each other and ignore the role of deception on social networks. On the other hand, deception appears to be surprisingly common among humans within social networks. In this paper, we study the effect of deception in influence maximization on social networks. We first model deception in social networks. Then, we model the opinion dynamics on these networks taking the deception into consideration thanks to a recent opinion dynamics model via sheaf Laplacian. We then extend two influential node detection methods, namely Laplacian centrality and DFF centrality, for the sheaf Laplacian to measure the effect of deception in influence maximization. Our experimental results on synthetic and real-world networks suggest that liars are more influential than honest users in social networks.
Databáze: arXiv