Fully Convolutional Fractional Scaling

Autor: Soloveitchik, Michael, Werman, Michael
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We introduce a fully convolutional fractional scaling component, FCFS. Fully convolutional networks can be applied to any size input and previously did not support non-integer scaling. Our architecture is simple with an efficient single layer implementation. Examples and code implementations of three common scaling methods are published.
Databáze: arXiv