$(\mathcal{F},\mathcal{A})$-Gorenstein flat homological dimensions
Autor: | Becerril, Víctor |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we develop the homological properties of the $(\mathcal{L}, \mathcal{A})$-Gorenstein flat $R$-modules $\mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$ proposed by Gillespie. Where the class $\mathcal{A} \subseteq \mathrm{Mod} (R^{op})$ sometimes corresponds to a duality pair $(\mathcal{L}, \mathcal{A})$. We study the weak global and finitistic dimensions that comes with $\mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$ and show that over a $(\mathcal{L}, \mathcal{A})$-Gorenstein ring, the functor $-\otimes _R -$ is left balanced over $\mathrm{Mod} (R^{op}) \times \mathrm{Mod} (R)$ by the classes $\mathcal{GF}_{(\mathcal{F}(R^{op}), \mathcal{A})} \times \mathcal{GF}_{(\mathcal{F}(R), \mathcal{A})}$. When the duality pair is $(\mathcal{F} (R), \mathcal{FP}Inj (R^{op}))$ we recover the G. Yang's result over a Ding-Chen ring, and we see that is new for $(\mathrm{Lev} (R), \mathrm{AC} (R^{op}))$ among others. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |