Lower bounds for Seshadri constants via successive minima of line bundles
Autor: | Ballaÿ, François |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a nef and big line bundle $L$ on a projective variety $X$ of dimension $d \geq 2$, we prove that the Seshadri constant of $L$ at a very general point is larger than $(d+1)^{\frac{1}{d}-1}$. This slightly improves the lower bound $1/d$ established by Ein, K\"uchle and Lazarsfeld. The proof relies on the concept of successive minima for line bundles recently introduced by Ambro and Ito. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |