Lower bounds for Seshadri constants via successive minima of line bundles

Autor: Ballaÿ, François
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Given a nef and big line bundle $L$ on a projective variety $X$ of dimension $d \geq 2$, we prove that the Seshadri constant of $L$ at a very general point is larger than $(d+1)^{\frac{1}{d}-1}$. This slightly improves the lower bound $1/d$ established by Ein, K\"uchle and Lazarsfeld. The proof relies on the concept of successive minima for line bundles recently introduced by Ambro and Ito.
Comment: 8 pages
Databáze: arXiv