Autor: |
Bourguin, Solesne, Durastanti, Claudio, Marinucci, Domenico, Todino, Anna Paola |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We introduce a model of Poisson random waves in $\mathbb{S}^{2}$ and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite-dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rates of divergence of eigenvalues and Poisson governing measures. |
Databáze: |
arXiv |
Externí odkaz: |
|