Spherical Poisson Waves

Autor: Bourguin, Solesne, Durastanti, Claudio, Marinucci, Domenico, Todino, Anna Paola
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We introduce a model of Poisson random waves in $\mathbb{S}^{2}$ and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite-dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rates of divergence of eigenvalues and Poisson governing measures.
Databáze: arXiv