Propagation of moments for large data and semiclassical limit to the relativistic Vlasov equation

Autor: Leopold, Nikolai, Saffirio, Chiara
Rok vydání: 2022
Předmět:
Zdroj: SIAM J. Math. Anal. 55(3), 1676-1706 (2023)
Druh dokumentu: Working Paper
DOI: 10.1137/22M1493616
Popis: We investigate the semiclassical limit from the semi-relativistic Hartree-Fock equation describing the time evolution of a system of fermions in the mean-field regime with a relativistic dispersion law and interacting through a singular potential of the form $K(x)=\gamma\frac{1}{|x|^a}$, $a \in \left( \max \left\{ \frac{d}{2} -2 , - 1 \right\}, d-2 \right]$, $d\in\{2,3\}$ and $\gamma\in\mathbb{R}$, with the convention $K(x)=\gamma\log(|x|)$ if $a=0$. For mixed states, we show convergence in Schatten norms with explicit rate towards the Weyl transform of a solution to the relativistic Vlasov equation with singular potentials, thus generalizing [J. Stat. Phys. 172 (2), 398--433 (2018)] where the case of smooth potentials has been treated. Moreover, we provide new results on the well-posedness theory of the relativistic Vlasov equations with singular interactions.
Databáze: arXiv