Generalised symmetries and bases for Dunkl monogenics

Autor: De Bie, Hendrik, Langlois-Rémillard, Alexis, Oste, Roy, Van der Jeugt, Joris
Rok vydání: 2022
Předmět:
Zdroj: Rocky Mountain J. Math. 53 (2) 397-415 (2023)
Druh dokumentu: Working Paper
DOI: 10.1216/rmj.2023.53.397
Popis: We introduce a family of commuting generalised symmetries of the Dunkl--Dirac operator inspired by the Maxwell construction in harmonic analysis. We use these generalised symmetries to construct bases of the polynomial null-solutions of the Dunkl--Dirac operator. These polynomial spaces form representation spaces of the Dunkl--Dirac symmetry algebra. For the $\mathbb{Z}_2^d$ case, the results are compared with previous investigations.
Comment: 18 pages, typos corrected, authors's accepted version for publication in Rocky Mountain J. Math
Databáze: arXiv