Special triple covers of algebraic surfaces
Autor: | Istrati, Nicolina, Pokora, Piotr, Rollenske, Sönke |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Documenta Mathematica 27 (2022) 2301 - 2332 |
Druh dokumentu: | Working Paper |
DOI: | 10.25537/dm.2022v27.2301-2332 |
Popis: | We study special triple covers $f\colon T \to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal E = \left(f_*\mathcal O_T/\mathcal O_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces. Comment: 26 pages |
Databáze: | arXiv |
Externí odkaz: |