Special triple covers of algebraic surfaces

Autor: Istrati, Nicolina, Pokora, Piotr, Rollenske, Sönke
Rok vydání: 2022
Předmět:
Zdroj: Documenta Mathematica 27 (2022) 2301 - 2332
Druh dokumentu: Working Paper
DOI: 10.25537/dm.2022v27.2301-2332
Popis: We study special triple covers $f\colon T \to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal E = \left(f_*\mathcal O_T/\mathcal O_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.
Comment: 26 pages
Databáze: arXiv