Multiplicative functions commutable with binary quadratic forms $x^2 \pm xy + y^2$

Autor: Park, Poo-Sung
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: If a multiplicative function $f$ is commutable with a quadratic form $x^2+xy+y^2$, i.e., \[ f(x^2+xy+y^2) = f(x)^2 + f(x)\,f(y) + f(y)^2, \] then $f$ is the identity function. In other hand, if $f$ is commutable with a quadratic form $x^2-xy+y^2$, then $f$ is one of three kinds of functions: the identity function, the constant function, and an indicator function for $\mathbb{N}\setminus p\mathbb{N}$ with a prime $p$.
Comment: Under review
Databáze: arXiv