Representation Stability and Finite Orthogonal Groups

Autor: Wang, Zifan, Kannan, Arun S.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s10468-023-10202-4
Popis: In this paper, we prove stability results about orthogonal groups over finite commutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a category $\mathbf{OrI}(R)$ and prove a Noetherianity theorem for the category of $\mathbf{OrI}(R)$-modules. This implies an asymptotic structure theorem for orthogonal groups. In addition, we show general homological stability theorems for orthogonal groups, with both untwisted and twisted coefficients, partially generalizing a result of Charney (1987).
Comment: 21 pages, 0 figures
Databáze: arXiv