Lyapunov stable chain recurrence classes for singular flows
Autor: | Gan, Shaobo, Yang, Jiagang, Zheng, Rusong |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that for a $C^1$ generic vector field $X$ away from homoclinic tangencies, a nontrivial Lyapunov stable chain recurrence class is a homoclinic class. The proof uses an argument with $C^2$ vector fields approaching $X$ in $C^1$ topology, with their Gibbs $F$-states converging to a Gibbs $F$-state of $X$. Comment: 63 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |