Lyapunov stable chain recurrence classes for singular flows

Autor: Gan, Shaobo, Yang, Jiagang, Zheng, Rusong
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We show that for a $C^1$ generic vector field $X$ away from homoclinic tangencies, a nontrivial Lyapunov stable chain recurrence class is a homoclinic class. The proof uses an argument with $C^2$ vector fields approaching $X$ in $C^1$ topology, with their Gibbs $F$-states converging to a Gibbs $F$-state of $X$.
Comment: 63 pages, 3 figures
Databáze: arXiv