Extension and validation of the pendulum model for longitudinal solar prominence oscillations

Autor: Luna, M., Terradas, J., Karpen, J., Ballester, J. L.
Rok vydání: 2022
Předmět:
Zdroj: A&A 660, A54 (2022)
Druh dokumentu: Working Paper
DOI: 10.1051/0004-6361/202142907
Popis: Longitudinal oscillations in prominences are common phenomena on the Sun. These oscillations can be used to infer the geometry and intensity of the filament magnetic field. Previous theoretical studies of longitudinal oscillations made two simplifying assumptions: uniform gravity and semi-circular dips on the supporting flux tubes. However, the gravity is not uniform and realistic dips are not semi-circular. To understand the effects of including the nonuniform solar gravity on longitudinal oscillations, and explore the validity of the pendulum model with different flux-tube geometries. We first derive the equation describing the motion of the plasma along the flux tube including the effects of nonuniform gravity, yielding corrections to the original pendulum model. We also compute the full numerical solutions for the normal modes, and compare them with the new pendulum approximation. We have found that the nonuniform gravity introduces a significant modification in the pendulum model. We have also found a cut-off period, i.e. the longitudinal oscillations cannot have a period longer than 167 minutes. In addition, considering different tube geometries, the period depends almost exclusively on the radius of curvature at the bottom of the dip. We conclude that nonuniform gravity significantly modifies the pendulum model. These corrections are important for prominence seismology, because the inferred values of the radius of curvature and minimum magnetic-field strength differ substantially from those of the old model. However, we find that the corrected pendulum model is quite robust and is still valid for non-circular dips.
Comment: Accepted for publication in Astronomy and Astrophysics
Databáze: arXiv