Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space
Autor: | Sabatini, Marco |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Fessler and Gutierrez \cite{Fe,Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\infty)$, then it is injective. We prove that the same holds replacing $(0,+\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $P_x + Q_y$ is not a surjective function. |
Databáze: | arXiv |
Externí odkaz: |