Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space

Autor: Sabatini, Marco
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Fessler and Gutierrez \cite{Fe,Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\infty)$, then it is injective. We prove that the same holds replacing $(0,+\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $P_x + Q_y$ is not a surjective function.
Databáze: arXiv