Non-commutative Hermite--Pad\'{e} approximation and integrability
Autor: | Doliwa, Adam |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Lett. Math. Phys. 112 (2022) 68 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11005-022-01560-z |
Popis: | We introduce and solve the non-commutative version of the Hermite-Pad\'{e} type I approximation problem. Its solution, expressed by quasideterminants, leads in a natural way to a subclass of solutions of the non-commutative Hirota (discrete Kadomtsev--Petviashvili) system and of its linear problem. We also prove integrability of the constrained system, which in the simplest case is the non-commutative discrete-time Toda lattice equation known from the theory of non-commutative Pad\'{e} approximants and matrix orthogonal polynomials. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |