Popis: |
The analysis of electromagnetic scattering in the isogeometric analysis (IGA) framework based on Loop subdivision has long been restricted to simply-connected geometries. The inability to analyze multiply-connected objects is a glaring omission. In this paper, we address this challenge. IGA provides seamless integration between the geometry and analysis by using the same basis set to represent both. In particular, IGA methods using subdivision basis sets exploit the fact that the basis functions used for surface description are smooth (with continuous second derivatives) almost everywhere. On simply-connected surfaces, this permits the definition of basis sets that are divergence-free and curl-free. What is missing from this suite is a basis set that is both divergence-free and curl-free, a necessary ingredient for a complete Helmholtz decomposition of currents on multiply-connected structures. In this paper, we effect this missing ingredient numerically using random polynomial vector fields. We show that this basis set is analytically divergence-free and curl-free. Furthermore, we show that these basis recovers curl-free, divergence-free, and curl-free and divergence-free fields. Finally, we use this basis set to discretize a well-conditioned integral equation for analyzing perfectly conducting objects and demonstrate excellent agreement with other methods. |