Autor: |
Dospinescu, Gabriel, Paškūnas, Vytautas, Schraen, Benjamin |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We bound the Gelfand-Kirillov dimension of unitary Banach space representations of $p$-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and $p$-adic Banach space representations of the group of units of a quarternion algebra over $\mathbb Q_p$ appearing in the $p$-adic Jacquet-Langlands correspondence, deducing finiteness results in favourable cases. |
Databáze: |
arXiv |
Externí odkaz: |
|