Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs
Autor: | Jacob, Hugo, Pilipczuk, Marcin |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Twin-width is a newly introduced graph width parameter that aims at generalizing a wide range of "nicely structured" graph classes. In this work, we focus on obtaining good bounds on twin-width $\text{tww}(G)$ for graphs $G$ from a number of classic graph classes. We prove the following: - $\text{tww}(G) \leq 3\cdot 2^{\text{tw}(G)-1}$, where $\text{tw}(G)$ is the treewidth of $G$, - $\text{tww}(G) \leq \max(4\text{bw}(G),\frac{9}{2}\text{bw}(G)-3)$ for a planar graph $G$ with $\text{bw}(G) \geq 2$, where $\text{bw}(G)$ is the branchwidth of $G$, - $\text{tww}(G) \leq 183$ for a planar graph $G$, - the twin-width of a universal bipartite graph $(X,2^X,E)$ with $|X|=n$ is $n - \log_2(n) + \mathcal{O}(1)$ . An important idea behind the bounds for planar graphs is to use an embedding of the graph and sphere-cut decompositions to obtain good bounds on neighbourhood complexity. Comment: 13 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |