2-Cartesian fibrations II: A Grothendieck construction for $\infty$-bicategories
Autor: | Abellán, Fernando, Stern, Walker H. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this work, we conclude our study of fibred $\infty$-bicategories by providing a Grothendieck construction in this setting. Given a scaled simplicial set $S$ (which need not be fibrant) we construct a 2-categorical version of Lurie's straightening-unstraightening adjunction, thereby furnishing an equivalence between the $\infty$-bicategory of 2-Cartesian fibrations over $S$ and the $\infty$-bicategory of contravariant functors $S^{\operatorname{op}} \to \mathbb{B}\mathbf{\!}\operatorname{icat}_\infty$ with values in the $\infty$-bicategory of $\infty$-bicategories. We provide a relative nerve construction in the case where the base is a 2-category, and use this to prove a comparison to existing bicategorical Grothendieck constructions. Comment: Comments welcome! v2: This version only includes the Grothendieck construction. The results regarding cofinality are now appearing in a separate paper |
Databáze: | arXiv |
Externí odkaz: |