Equivalent Integrable Metrics on the Sphere with Quartic Invariants

Autor: Tsiganov, Andrey V.
Rok vydání: 2022
Předmět:
Zdroj: SIGMA 18 (2022), 094, 19 pages
Druh dokumentu: Working Paper
DOI: 10.3842/SIGMA.2022.094
Popis: We discuss canonical transformations relating well-known geodesic flows on the cotangent bundle of the sphere with a set of geodesic flows with quartic invariants. By adding various potentials to the corresponding geodesic Hamiltonians, we can construct new integrable systems on the sphere with quartic invariants.
Databáze: arXiv