Uniqueness of equilibrium states for Lorenz attractors in any dimension
Autor: | Pacifico, Maria Jose, Yang, Fan, Yang, Jiagang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note, we consider the thermodynamic formalism for Lorenz attractors of flows in any dimension. Under a mild condition on the H\"older continuous potential function $\phi$, we prove that for an open and dense subset of $C^1$ vector fields, every Lorenz attractor supports a unique equilibrium state. In particular, we obtain the uniqueness for the measure of maximal entropy. |
Databáze: | arXiv |
Externí odkaz: |