Integral means of derivatives of univalent functions in Hardy spaces
Autor: | Pérez-González, Fernando, Rättyä, Jouni, Vesikko, Toni |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the norm in the Hardy space $H^p$ satisfies \begin{equation}\label{absteq} \|f\|_{H^p}^p\asymp\int_0^1M_q^p(r,f')(1-r)^{p\left(1-\frac1q\right)}\,dr+|f(0)|^p\tag{\dag} \end{equation} for all univalent functions provided that either $q\ge2$ or $\frac{2p}{2+p}Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |