Translators of the Gauss curvature flow
Autor: | Aydin, Muhittin Evren, López, Rafael |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A $K^\alpha$-translator is a surface in Euclidean space $\r^3$ that moves by translations in a spatial direction and under the $K^\alpha$-flow, where $K$ is the Gauss curvature and $\alpha$ is a constant. We classify all $K^\alpha$-translators that are rotationally symmetric. In particular, we prove that for each $\alpha$ there is a $K^\alpha$-translator intersecting orthogonally the rotation axis. We also describe all $K^\alpha$-translators invariant by a uniparametric group of helicoidal motions and the translators obtained by separation of variables. |
Databáze: | arXiv |
Externí odkaz: |