Vector bundles on quantum conjugacy classes

Autor: Mudrov, Andrey
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\mathfrak{g}$ be a simple complex Lie algebra of a classical type and $U_q(\mathfrak{g})$ the corresponding Drinfeld-Jimbo quantum group at $q$ not a root of unity. With every point $t$ of the fixed maximal torus $T$ of an algebraic group $G$ with Lie algebra $\mathfrak{g}$ we associate an additive category $\mathcal{O}_q(t)$ of $U_q(\mathfrak{g})$-modules that is stable under tensor product with finite-dimensional quasi-classical $U_q(\mathfrak{g})$-modules. We prove that $\mathcal{O}_q(t)$ is essentially semi-simple and use it to explicitly quantize equivariant vector bundles on the conjugacy class of $t$.
Comment: 42 pages, no figures. A revised version. The main changes: a dense open set of admissible deformation parameter values is indicated
Databáze: arXiv