Note on Green's functions of non-divergence elliptic operators with continuous coefficients
Autor: | Dong, Hongjie, Kim, Seick, Lee, Sungjin |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society 151 (2023), no.5, 2045-2055 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/proc/16326 |
Popis: | We improve a result in Kim and Lee (Ann. Appl. Math. 37(2):111--130, 2021): showing that if the coefficients of an elliptic operator in non-divergence form are of Dini mean oscillation, then its Green's function has the same asymptotic behavior near the pole $x_0$ as that of the corresponding Green's function for the elliptic equation with constant coefficients frozen at $x_0$. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |