Asymptotic shape of isolated magnetic domains
Autor: | Knüpfer, Hans, Stantejsky, Dominik |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1098/rspa.2022.0018 |
Popis: | We investigate the energy of an isolated magnetized domain $\Omega \subset \mathbb{R}^n$ for $n=2,3$. In non-dimensionalized variables, the energy given by $$ \mathcal{E}(\Omega) \ = \ \int_{\mathbb{R}^n} |\nabla \chi_{\Omega}| \ dx + \int_{\mathbb{R}^n} |\nabla h_\Omega|^2 \ dx $$ penalizes the interfacial area of the domain as well as the energy of the corresponding magnetostatic field. Here, the magnetostatic potential $h_\Omega$ is determined by $\Delta h_\Omega = \partial_1 \chi_\Omega$, corresponding to uniform magnetization within the domain. We consider the macroscopic regime $|\Omega| \rightarrow \infty$, in which we derive compactness and $\Gamma$-limit which is formulated in terms of the cross-sectional area of the anisotropically rescaled configuration. We then give the solutions for the limit problems. Comment: 27 pages, 2 figures, final version accepted for publication in Proc. R. Soc. A |
Databáze: | arXiv |
Externí odkaz: |