Subsystem entropies of shifts of finite type and sofic shifts on countable amenable groups

Autor: Bland, Robert, McGoff, Kevin, Pavlov, Ronnie
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1017/etds.2022.57
Popis: In this work we study the entropies of subsystems of shifts of finite type (SFTs) and sofic shifts on countable amenable groups. We prove that for any countable amenable group $G$, if $X$ is a $G$-SFT with positive topological entropy $h(X) > 0$, then the entropies of the SFT subsystems of $X$ are dense in the interval $[0, h(X)]$. In fact, we prove a "relative" version of the same result: if $X$ is a $G$-SFT and $Y \subset X$ is a subshift such that $h(Y) < h(X)$, then the entropies of the SFTs $Z$ for which $Y \subset Z \subset X$ are dense in $[h(Y), h(X)]$. We also establish analogous results for sofic $G$-shifts.
Comment: 32 pages, 4 figures
Databáze: arXiv