On quasi-tame Looijenga pairs
Autor: | Brini, Andrea, Schuler, Yannik |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove a conjecture of Bousseau, van Garrel and the first-named author relating, under suitable positivity conditions, the higher genus maximal contact log Gromov-Witten invariants of Looijenga pairs to other curve counting invariants of Gromov-Witten/Gopakumar-Vafa type. The proof consists of a closed-form $q$-hypergeometric resummation of the quantum tropical vertex calculation of the log invariants in presence of infinite scattering. The resulting identity of $q$-series appears to be new and of independent combinatorial interest. Comment: 15 pages. v2: minor changes, explanations added, 18 pages. Version accepted for publication on Commun. Num. Theor. Phys |
Databáze: | arXiv |
Externí odkaz: |