Popis: |
Using an intrinsic approach, we study some properties of random fields which appear as tail fields of regularly varying stationary random fields. The index set is allowed to be a general locally compact Hausdorff Abelian group $\mathbb{G}$. The values are taken in a measurable cone, equipped with a pseudo norm. We first discuss some Palm formulas for the exceedance random measure $\xi$ associated with a stationary (measurable) random field $Y=(Y_s)_{s\in \mathbb{G}}$. It is important to allow the underlying stationary measure to be $\sigma$-finite. Then we proceed to a random field (defined on a probability space) which is spectrally decomposable, in a sense which is motivated by extreme value theory. We characterize mass-stationarity of the exceedance random measure in terms of a suitable version of the classical Mecke equation. We also show that the associated stationary measure is homogeneous, that is a tail measure. We then proceed with establishing and studying the spectral representation of stationary tail measures and with characterizing a moving shift representation. Finally we discuss anchoring maps and the candidate extremal index. |